If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(-7x^2-5x+11)+(5x^2+4x-9)=0
We get rid of parentheses
-7x^2+5x^2-5x+4x+11-9=0
We add all the numbers together, and all the variables
-2x^2-1x+2=0
a = -2; b = -1; c = +2;
Δ = b2-4ac
Δ = -12-4·(-2)·2
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{17}}{2*-2}=\frac{1-\sqrt{17}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{17}}{2*-2}=\frac{1+\sqrt{17}}{-4} $
| -11-7r=-20-8r | | (-3y^2+10y-5)-(5y^2+5y+8)=0 | | 15x+10=4x-2=160 | | 45=2k+19 | | 11+15k=16k | | 15x+10=4x-2 | | 8y-5=8y-18-22 | | -3t+18t+21=0 | | 11j+16=12j+1 | | -17=2(v-7)-5v | | (11b^2+7b-12)-(15b^2-19b-21)=0 | | (38x+4)=(49+2)=180 | | (9y^2-17y-12)+(5y^2+12y+4)=0 | | 9t^2+1=0 | | 2x^2-20x-24=0 | | (39x+4)=(49+2)=180 | | (12a^2+13a+7)+(9a^2+15a+8)=0 | | 14y=15+9y | | 3b+2=2b | | -3(4x+2)=4 | | (6x^2+36x+13)-(4x^2+13x+33)=0 | | 5/6x+2=-7+1/2x | | (5y^2+7y-3)+(-2y^2-5y+6)=0 | | 5x-4=7x(3-5x) | | 3(5y+1)=8y | | 11x+6+3x+31=180 | | 3(4x-11)=10 | | (4s^2-2s-3)-(5s^2+7s-6)=0 | | 6x+10+x+23=90 | | 8x+100+2x+50=90 | | (3t^2-2t+4)+(2t^2+5t-3)=0 | | 9(3-Y)+8(-3+y)=0 |